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Degeneracy of some matrix graph invariants
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New matrices associated with graphs and induced global and local topological indices of
molecular graphs were proposed recently by Diudea, Minailiuc and Balaban. These matrices in
canonical form are matrix graph invariants. A combined degeneracy of such invariants is con-
sidered. For every case of degeneracy corresponding graphs are presented.

1. Introduction

Matrices associated with graphs are widely used for designing and computing
local and global topological indices of molecular graphs [1-9]. Some of these
matrices naturally arise from considering distances between vertices of a graph.
For example, the well known topological index, Wien number, can be defined and
calculated from the distance matrix or from the layer matrix of a graph [8].

Three new graph matrices B, E and S were proposed recently by Diudea, Minai-
liuc and Balaban [9]. These matrices were used for designing families of local (BR,
ER and SR) and global (BY, EY and SY) topological indices. It was shown that
the topological indices are able to express the branching (or complexity) and to
induce a particular ordering of molecular graphs. They also correlate well with van
der Waals volumes and boiling points in alkane series.

We also consider the layer matrix of a graph (or distance degree sequence),
based on distances between vertices of a graph. This matrix is used for characteriz-
ing the structure of graphs, establishing the similarity of molecular graphs, calcu-
lating topological indices, designing graph algorithms, and in other applications
[10-23].

An interesting problem about properties of these matrices is the question of
their degeneracy. A coincidence of the matrices for nonisomorphic graphs implies a
degeneracy of all derived topological indices. We shall consider some cases of com-
bined degeneracy of the layer matrix A and the matrices B, Eand S.
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2.Matrices of a graph

We consider the graph matrices which do not represent a graph uniquely. For
example, the distance matrix determines a graph up to isomorphism.

The distance d(v, u) between two vertices ¥ and v in a graph G is the minimal
number of edges in G from u to v. The eccentricity ecc(v) of a vertex vis max d(v, u)
for all # in G, and the diameter diam(G) of a graph is the maximum eccentricity.
The degree of a vertex ve V'(G) is the number of its adjacent vertices and is denoted
by deg(v). We assume throughout this paper that a graph G has p vertices and ¢
edges.

Define the partition of vertices of a graph G with respect to v; € V' (G) as the set
of layers G(vi) = {Vj(vi)|j = 0,1, ... ,ecc(v) and ue V;(v;) < d(vi,u) = j}. Figure 1
shows a polycyclic graph G and the partition of its vertices. The set of partitions
G(v;) for all v;e V(G) is a source for generating various matrices of a graph. Now
we consider four such matrices.

The layer matrix A(G) = ||A;|| of a graph G includes the cardinalities of layers
in all partitions. Its entries A; are the number of vertices situated at distance j from
the vertex vj,i.e. \j = |V;(v))|foralli =1,2,...,pandj = 1,2,...,diam(G).

The matrix B(G) = ||b;j|| of a graph G contains information about degrees of ver-
tices in the layers of partitions. The entry b; is defined as sum of the vertex degrees
for all wvertices situated at distance j from the vertex wv;, i.e.
by = {3 deg(u)|lue Vj_i(vj)}foralli=1,2,...,pandj = 1,2,...,diam(G) + 1.

The matrix E(G) = |le;|| of a graph G contains the cardinalities of edge sets
around layers. The component e;; is equal to sum of the number of edges incident
only with the vertices of layer ¥j_;(v;) and the number of edges from V;_;(v;) to
Vi(vi)foralli=1,2,...,pandj = 1,2,...,diam(G) + 1.

The matrix S(G) = ||s;| is introduced for increasing the discriminating power
of the matrices B and E. The matrix entry is defined by the equality s;; = b;; + e;; for
alli=1,2,...,pandj = 1,2,...,diam(G) + 1.

Figure 2 shows the matrices for a tree G, for a bipartite graph G, and for a
graph G3 with old cycles. Note that all entries of the last column in the matrix E are
always equal to zero for a bipartite graph.
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Fig. 1. Partition of graph vertices with respect to the vertex v.
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1221 13431 12210 25641
1221 13431 12210 25641
1122 123402 117220 23562

A=|32 10| B=|35310| EB{sz2c100|s=l672a10
2220 24420 22200 46620
1230 13530 12300 25830
3300 36300 33000 659300
23 1 2651 2410 410 6 1
222 2552 2320 48 72
132 1463 1330 2 7 93

r=[132 B=|1 463 E={1 330 s=lz2 7 93
123 1364 1240 2 5104
420 4730 4300 810 30
330 3740 3400 611 40

G3
)
321 1 3743 1 38210 610 64 1
2221 26451 23220 4 9 671
1222 13455 122 31 2 5 686

A=[32 20| B=[37530] E={33300[ S=[610 830
3220 35550 32310 6 7 860
2410 26820 24300 4101120
2320 25830 23200 4 81230
2320 25650 23310 4 8 960

Fig. 2. Matrix invariants of graphs.

3. Relationships between the matrix entries

One immediate observation is that sums of the first column of considered
matrices are the degree sequence of a graph. The number of non-zero elements in a
row of a matrix is called the length of the row. The sequence of lengths for all
rows in the layer matrix forms the eccentric sequence of a graph [24].

Table 1 presents obvious results of summation for the matrix entries.

In order to compare the matrices we define its canonical form. By ordering the
rows of a matrix with respect to the decrease of their length, and then lexicographi-
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Table 1
Sums of the matrix entries.
A B E S

ZA” =24 Zbil =2q Zeil = 2q an = 4q
i i i 7

S a=p-1 S by=2q Yei=q S sy =3
J j 7 7

ZA;,-=p(p—l) Zbij:zP‘I Zeij=Pq Zs;j=3pq
i 7 7

)

cally arranging the rows with the same length, one can obtain a canonical form of
the matrix. It is clear that the matrices, presented in canonical form, are graph
invariants. All matrices of graphs of fig. 2 have canonical form. We shall assume
that the matrices are always canonical.

Denote by m;; the number of edges in which one of the incident vertices belongs
to the layer ¥;_»(v;) and an other vertex belongs to ¥;_; (v;). Let c;; be the number of
edges incident with the vertices of ¥j_i(v;) only. For the sake of brevity we shall
drop the bounds for entry indices.

PROPOSITION 1
For an arbitrary graph the following inequalities hold
S,‘j}bij, .S’,'j?G,j, bUZ)\,], bijze,-j, E,JZ)\U
Proof
The inequalities s;; 2> by, 5; > e;; and by > ) are obvious. An entry of the matrix
B may be presented as b; = my; + 2¢;; + m; j 1, where m;; >0 for j > 2. For an entry
of the matrix E wehave e;; = ¢;; 4+ m; j,1. Therefore, b >e;;. |
PROPOSITION 2
For an arbitrary graph the following equality holds:
bj — eij1 — ey =cj—Cijo1-

Proof

Since €; = Cjj +my iy and € j-1 = Cij—1+ M, then b,j = my + 2(,',']' +m; gy
=my +cy+ej=¢e;1— Cj-1+ cy+ ey. O
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The relations between matrix entries may be simplified for classes of graphs.
COROLLARY'1

For an arbitrary bipartite graph we have

(a) the first columns of the matrices B and E are the same;

(b) entries of the last column of the matrix E are always equal to zero;

(c) the last column of the matrix B and the last but one column of E are the
same;

(d) by = e;j_1 + e; for2<j <diam(G).

Proof

Since a bipartite graph has no odd cycles, then ¢; = 0 for all i and j. This
obviously implies the cases (b)-(d). m n

All entries of the matrices B and S are defined completely by the entries of the
matrix E. This property shows that local and global topological indices based on
the matrices B and S may be calculated by means of the matrix E.

COROLLARY 2

For an arbitrary tree we have

(a) the first columns of the matrices B and A are the same:
(b) thelast columns of the matrices B and A are the same;
(c) e = Ajand by = A j_1 + N for 2<j < diam(G).

Proof

The last layer of any partition consists of vertices with degree 1. Every vertex of
the layer Vj(v;), j=1, is incident with only vertex of the layer ¥;_i(v;) in a tree.
Hence, e; = \;. Since a tree is a bipartite graph, then b; = X;;_; + ; for all
2 <j<diam(G). O

The last proposition shows that topological indices of trees may be computed
by means of the layer matrix.

The next result provides a relationship between the first and the second columns
of the matrices.

PROPOSITION 3

(a) Foranarbitrary graph the equality holds
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Z bz?l = Z bip;
i i
(b) if a graph has no triangles (simple cycles C3), then
Z efl —-2q= Z € ;
i i
(c) ifagraphhasnocycles C; and Cy, then
DM -29=) Ja;
i i

(d) if a graph has no triangles, then

%Zfl —29= Z-S'rz-
1 ]

Proof

(a) It is clear, that every vertex v of a graph lies in the layers ¥ (u) for all vertices
uincident with v, i.e. the vertex v is situated in the first layer of all partitions exactly
deg(v) times. Therefore, 3", b = 3, deg?(v).

(b) Consider a vertex v of V;(u) for an arbitrary vertex ». Only edge connects
the vertex v with the vertex u. Since a graph has no triangles, then deg(v) — 1 edges
connect v with vertices of the layer V5(u). Hence, ) ;en = >, deg(v)(deg(v) — 1)
=3, deg’(v) — 2¢.

(c) The proof is analogous as in the case (b). It should be noted that every edge
between v and vertices of V3 (u) connects v with a new vertex of the layer.

(d) Since bjy = e;; =sn/2,then 3 ;50 =3 ;bn+Y en=3 ;03 +3., € —2q
=325~ 24. O

Equalities of proposition 3 may be used as additional necessary conditions to
check whether a given integer matrix is graphical.

4. Degeneracy of the matrix graph invariants

We consider the problem of degeneracy of the matrix graph invariants. A degen-
eracy of the matrices A, B, E and S implies a degeneracy of all derived topological
indices.

A degeneracy of the layer matrix or the matrix E is a sufficient condition for a
degeneracy of all other matrices for trees.
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PROPOSITION 4

Let G and H be trees. If the equality A(G) = L(H) (or VE(G) = E(H)) holds,
then B(G) = B(H),E(G) = E(H) (or M(G) = A(H)) and S(G) = S(H).

Proof

The proof immediately follows from the relations between entries of the
matrices stated by corollary 2. 0

A degeneracy of the matrices B and S depends from a degeneracy of the matrix
E for bipartite graphs.

PROPOSITION 5

Let G and H be bipartite graphs. If the equality E(G) = E(H) holds, then
B(G) = B(H) and S(G) = S(H).

Proof

The proof follows from the relations between entries of the matrices established
by corollary 1. O

The previous propositions are not valid for arbitrary graphs. We consider cases
of combined degeneracy of the matrices A, B and E only, since these matrices are
constructed independently.

PROPOSITION 6

There are pairs of graphs G and H, which have one of the following properties:
(1)M(G) # MH),B(G) = B(H), E(G) = E(H) and S(G) = S(H);
(2)MG) # M(H),B(G) # B(H),E(G) = E(H) and S(G) # S(H);
(3)M(G) # M(H),B(G) = B(H),E(G) # E(H) and S(G) # S(H);
(4)M(G) = M(H),B(G) # B(H),E(G) # E(H) and S(G) # S(H);
(5)MG) = M(H),B(G) = B(H),E(G) = E(H) and 8(G) = S(H);
(6)M(G) = M(H),B(G) # B(H),E(G) = E(H) and S(G) # S(H);
(NM(G) = M(H),B(G) = B(H),E(G) # E(H) and $(G) # S(H).

Figure 3 presents examples of graphs for every case of proposition 6. Note that
these graphs are not minimal with given properties. For example, the central cycle
C,4 of some graphs of fig. 3 can be substituted by an edge.

An interesting example of graphs of polycyclic catacondensed benzenoid hydro-
carbons is shown in fig. 4. All matrix invariants of the graphs degenerate as in
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Fig. 3. Pairs of graphs with the same matrix invariants.
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case (5). It seems that these graphs have the minimal number of vertices among all
graphs of this class.

Next, we shall construct a set of graphs in which the matrix invariants are the
same for all graphs. Consider graphs Gy, G, and G of fig. 5. These graphs include
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Fig. 4. Cata-condensed benzenoid graphs with the same matrix invariants.

four copies of the connected graph A which consists of a hexagonal ring and four
pendant vertices. The neighbor graphs of fig. 5 are distinguished only by the way of
attachment of copy of H. We have A(G;) = MGj), B(G;) = B(G)), E(G;) = E(G))
and S(G;) = S(G;) foralli,j = 1,2,3.

5. Conclusions

We have presented simple properties of four matrices based on partitions of
graph vertices. Also we considered various cases of matrix graph invariants degen-
eracy, which implies a degeneracy of derived topological indices. A program for
computing these matrices from the vertex partitions of a graph was developed.
Graphs are input by means of the original screen editor of molecular graphs. The

[»]

ny

Fig. 5. Graphs with the same matrix invariants.
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program is written in Turbo Pascal for an IBM PC XT/AT compatible computer
and available on request.
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